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In our paper on “Random Tranches” (Risk, March 2003), we define the function

Ξτ (z) ≡
∫ 1

0
B(z; τu, τ(1 − u))du (1)

whereB(z; a, b) denotes the Beta(a, b) cumulative distribution function evaluated atz. This function does

not have an analytical solution. In order to arrive at a tractable and robust solution to our “Uncertainly in

Loss Prioritization” (ULP) model, we require a reasonably simple and highly accurate approximation to

Ξτ (z). This technical note develops such an approximation and tests its accuracy over the feasible range of

values forτ .

Analytic solutions toΞτ (z) are available in the special cases ofτ = 0 andτ = ∞. For all z ∈ (0, 1)
andu ∈ (0, 1), we have

lim
τ→0

B(z; τu, τ(1 − u)) = 1 − u,

which impliesΞ0(z) = 1/2. At the other extreme, we have

lim
τ→∞B(z; τu, τ(1 − u)) = 1{z≥u},

which impliesΞ∞(z) = z. It is desirable that our approximation toΞτ take on the same limiting forms.

For large but finite values ofτ , the Ξτ (z) function is close toz. The difference cannot be ignored,

however, as it represents the impact of uncertainty in loss prioritization. Figure 1 shows howΞτ (z) varies

with τ . By substractingz from Ξτ (z), we can better focus on the component of interest. For positive finite

τ , Ξτ (z) weaves around the45◦ line in a regular symmetric pattern. As shown in Figure 2, the function

Ξτ (z) − z starts at zero, rises sharply, levels off quickly, then becomes roughly linear with negative slope

and hits zero atz = 1/2. The pattern abovez = 1/2 is the mirror image of the pattern belowz = 1/2; i.e.,

the function displays rotational symmetry aroundz = 1/2.

A simple function that displays the same cyclical behavior is(1/2 − z)(z(1 − z))(α−1) for α ≥ 1.
∗The opinions expressed here are those of the authors, and do not reflect the views of the Board of Governors or its staff.
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Therefore, we propose to approximateΞτ (z) by

Ξ̂τ (z) ≡ z + ξ

(
1
2
− z

)
(z(1 − z))α−1

B(α,α)
, (2)

where the coefficientsξ andα are functions ofτ . Weighting(z(1 − z))α−1 by the beta function is natural

as it transforms the last piece ofΞ̂τ into a beta density.

We solve for coefficientsξ andα through moment matching. TheΞτ function can be understood as

the unconditional cdf of a random variableZ that has conditional distributionZ|U ∼ Beta(τU, τ(1 − U)),
whereU ∼ Uniform[0, 1]. The approximation̂Ξτ (z) equals zero atz = 0, one atz = 1, and is increasing

in between, so also can be treated as a cdf on the unit interval. In each case, the first moment is1/2. We

setξ andα so that the second and fourth moments of the two distributions match. (Due to the rotational

symmetry ofΞ andΞ̂, the third moments add no new information.)

As Ξτ is a compounded beta distribution, its moments are easily obtained. Thejth uncentered moment

is given by

λj ≡ 1
(τ)j

∫ 1

0
(τu)jdu

where(a)k is Pochhammer’s notation, i.e.,(a)0 = 1, (a)1 = a, (a)k = (a)k−1(a + k − 1). The function

(τu)j is merely ajth order polynomial inu, so λj has a simple closed form solution for anyj. The

corresponding moments for̂Ξτ also have closed-form solution:

λ̂j ≡ 1
j + 1

+ ξ
j(j − 1)

2
(α)j−1

(2α)j
.

We setλj = λ̂j for j = 2 andj = 4, and solve forξ andα:

α =
3(τ2 + 6τ + 6)
3τ2 + 13τ + 18

and ξ =
2α + 1

3(τ + 1)
.

The approximation is extraordinarily precise over the entire range ofτ values. In the four panels of

Figure 3, we plotΞτ (z) − z andΞ̂τ (z) − z for τ = (1, 8, 64, 512). Subtracting out the linear component

serves to heighten the visual differences betweenΞ and our approximation, yet in each case the fit is nearly

perfect. The approximation also satisfies the desired limiting behavior. Whenτ = 0, α = ξ = 1, so

Ξ̂τ (z) = 1/2. Whenτ = ∞, ξ = 0 andα = 1, soΞ̂τ (z) = z.

For reasonably large values ofτ , we can approximateα ≈ 1 andξ ≈ 1/τ . Figure 4 shows howα and

ξ vary with τ . In the upper panel, we see thatα(τ) is nonlinear for low values ofτ , but asymptotes to one

asτ heads towards infinity (note the log-scale on theτ axis). In the lower panel, we see thatξ(τ) converges

quite closely to1/τ by τ = 100 (log-scale on both axes). When we apply these approximations, we arrive
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at the simple functional form

Ξ̂τ (z) = z +
1
τ

(
1
2
− z

)
.
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Figure 1: Dependence ofΞτ (z) on τ
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Figure 2: Cyclical component ofΞτ (z)
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Figure 3: Cyclical components ofΞτ (z) andΞ̂τ (z)
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Note: The panels showΞτ (z) − z andΞ̂τ (z) − z for different values ofτ .
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Figure 4: Coefficientsα andξ as functions ofτ
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