On the approximation of $\Xi_{\tau}(z)$ in the ULP model

Michael Gordy and David Jones* Board of Governors of the Federal Reserve System

February 25, 2003

In our paper on "Random Tranches" (Risk, March 2003), we define the function

$$\Xi_{\tau}(z) \equiv \int_0^1 B(z;\tau u,\tau(1-u))du \tag{1}$$

where B(z; a, b) denotes the Beta(a, b) cumulative distribution function evaluated at z. This function does not have an analytical solution. In order to arrive at a tractable and robust solution to our "Uncertainly in Loss Prioritization" (ULP) model, we require a reasonably simple and highly accurate approximation to $\Xi_{\tau}(z)$. This technical note develops such an approximation and tests its accuracy over the feasible range of values for τ .

Analytic solutions to $\Xi_{\tau}(z)$ are available in the special cases of $\tau = 0$ and $\tau = \infty$. For all $z \in (0, 1)$ and $u \in (0, 1)$, we have

$$\lim_{\tau \to 0} B(z; \tau u, \tau(1-u)) = 1 - u,$$

which implies $\Xi_0(z) = 1/2$. At the other extreme, we have

$$\lim_{\tau \to \infty} B(z; \tau u, \tau(1-u)) = \mathbb{1}_{\{z \ge u\}},$$

which implies $\Xi_{\infty}(z) = z$. It is desirable that our approximation to Ξ_{τ} take on the same limiting forms.

For large but finite values of τ , the $\Xi_{\tau}(z)$ function is close to z. The difference cannot be ignored, however, as it represents the impact of uncertainty in loss prioritization. Figure 1 shows how $\Xi_{\tau}(z)$ varies with τ . By substracting z from $\Xi_{\tau}(z)$, we can better focus on the component of interest. For positive finite τ , $\Xi_{\tau}(z)$ weaves around the 45° line in a regular symmetric pattern. As shown in Figure 2, the function $\Xi_{\tau}(z) - z$ starts at zero, rises sharply, levels off quickly, then becomes roughly linear with negative slope and hits zero at z = 1/2. The pattern above z = 1/2 is the mirror image of the pattern below z = 1/2; i.e., the function displays rotational symmetry around z = 1/2.

A simple function that displays the same cyclical behavior is $(1/2 - z)(z(1 - z))^{(\alpha - 1)}$ for $\alpha \ge 1$.

^{*}The opinions expressed here are those of the authors, and do not reflect the views of the Board of Governors or its staff.

Therefore, we propose to approximate $\Xi_{\tau}(z)$ by

$$\hat{\Xi}_{\tau}(z) \equiv z + \xi \left(\frac{1}{2} - z\right) \frac{(z(1-z))^{\alpha-1}}{B(\alpha, \alpha)},\tag{2}$$

where the coefficients ξ and α are functions of τ . Weighting $(z(1-z))^{\alpha-1}$ by the beta function is natural as it transforms the last piece of $\hat{\Xi}_{\tau}$ into a beta density.

We solve for coefficients ξ and α through moment matching. The Ξ_{τ} function can be understood as the unconditional cdf of a random variable Z that has conditional distribution $Z|U \sim \text{Beta}(\tau U, \tau(1-U))$, where $U \sim \text{Uniform}[0, 1]$. The approximation $\hat{\Xi}_{\tau}(z)$ equals zero at z = 0, one at z = 1, and is increasing in between, so also can be treated as a cdf on the unit interval. In each case, the first moment is 1/2. We set ξ and α so that the second and fourth moments of the two distributions match. (Due to the rotational symmetry of Ξ and $\hat{\Xi}$, the third moments add no new information.)

As Ξ_{τ} is a compounded beta distribution, its moments are easily obtained. The j^{th} uncentered moment is given by

$$\lambda_j \equiv \frac{1}{(\tau)_j} \int_0^1 (\tau u)_j du$$

where $(a)_k$ is Pochhammer's notation, i.e., $(a)_0 = 1$, $(a)_1 = a$, $(a)_k = (a)_{k-1}(a + k - 1)$. The function $(\tau u)_j$ is merely a j^{th} order polynomial in u, so λ_j has a simple closed form solution for any j. The corresponding moments for $\hat{\Xi}_{\tau}$ also have closed-form solution:

$$\hat{\lambda}_j \equiv \frac{1}{j+1} + \xi \frac{j(j-1)}{2} \frac{(\alpha)_{j-1}}{(2\alpha)_j}.$$

We set $\lambda_j = \hat{\lambda}_j$ for j = 2 and j = 4, and solve for ξ and α :

$$\alpha = \frac{3(\tau^2 + 6\tau + 6)}{3\tau^2 + 13\tau + 18} \quad \text{and} \quad \xi = \frac{2\alpha + 1}{3(\tau + 1)}$$

The approximation is extraordinarily precise over the entire range of τ values. In the four panels of Figure 3, we plot $\Xi_{\tau}(z) - z$ and $\hat{\Xi}_{\tau}(z) - z$ for $\tau = (1, 8, 64, 512)$. Subtracting out the linear component serves to heighten the visual differences between Ξ and our approximation, yet in each case the fit is nearly perfect. The approximation also satisfies the desired limiting behavior. When $\tau = 0$, $\alpha = \xi = 1$, so $\hat{\Xi}_{\tau}(z) = 1/2$. When $\tau = \infty$, $\xi = 0$ and $\alpha = 1$, so $\hat{\Xi}_{\tau}(z) = z$.

For reasonably large values of τ , we can approximate $\alpha \approx 1$ and $\xi \approx 1/\tau$. Figure 4 shows how α and ξ vary with τ . In the upper panel, we see that $\alpha(\tau)$ is nonlinear for low values of τ , but asymptotes to one as τ heads towards infinity (note the log-scale on the τ axis). In the lower panel, we see that $\xi(\tau)$ converges quite closely to $1/\tau$ by $\tau = 100$ (log-scale on both axes). When we apply these approximations, we arrive

at the simple functional form

$$\hat{\Xi}_{\tau}(z) = z + \frac{1}{\tau} \left(\frac{1}{2} - z\right).$$

1 0.9 0.8 0.7 0.6 Ξ_{0.5} 0.4 0.3 τ=1 τ=8 τ=64 τ=512 0.2 0.1 0 0.7 0.5 Z 0.1 0.2 0.3 0.4 0.6 0.8 0.9 1

Figure 1: Dependence of $\Xi_{\tau}(z)$ on τ

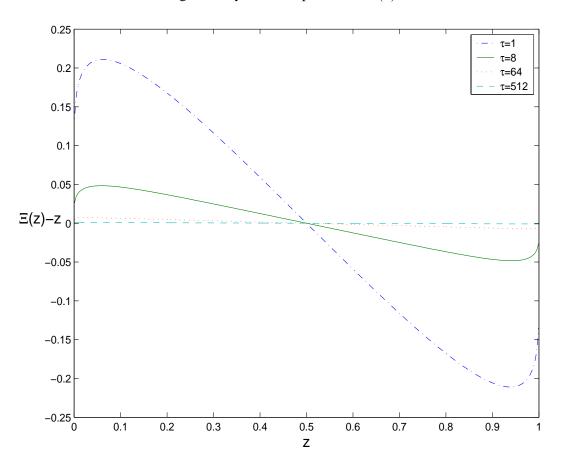


Figure 2: Cyclical component of $\Xi_{\tau}(z)$

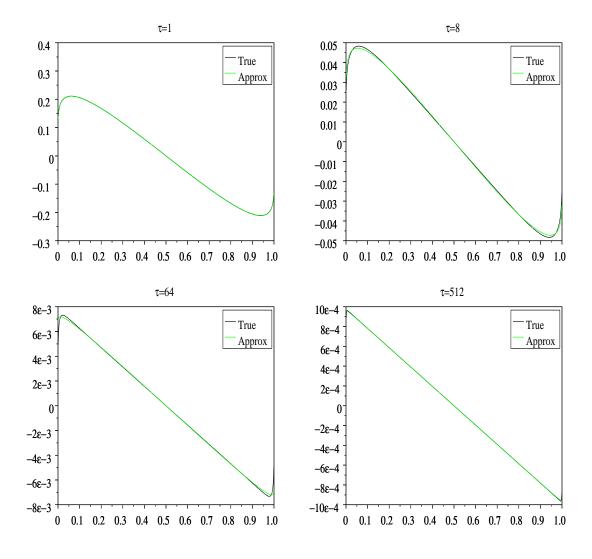


Figure 3: Cyclical components of $\Xi_{\tau}(z)$ and $\hat{\Xi}_{\tau}(z)$

Note: The panels show $\Xi_{\tau}(z) - z$ and $\hat{\Xi}_{\tau}(z) - z$ for different values of τ .

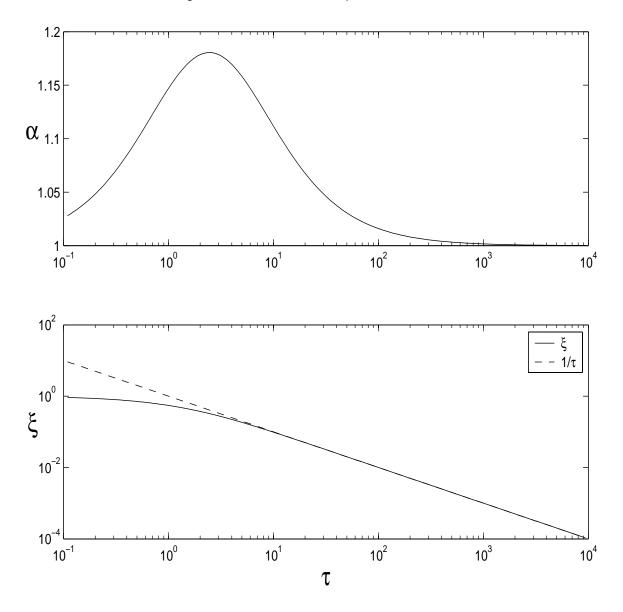


Figure 4: Coefficients α and ξ as functions of τ