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Abstract

When economic capital is calculated using a portfolio model of credit value-at-risk, the marginal capital
requirement for an instrument depends, in general, not only on the characteristics of the instrument itself,
but also on the properties of the portfolio in which it is held. By contrast, ratings-based risk-bucket capital
rules, including both the current Basel Accord and any its recently proposed replacement, assign a capital
charge to an instrument based only on its own characteristics.

In this paper, I demonstrate that risk-bucket capital rules can be reconciled with the general class of
credit VaR models. VaR models imply marginal capital charges which depend only on an asset’s own
characteristics only if (a) there is only a single systematic risk factor driving correlations across obligors,
and (b) portfolios are “asymptotically fine-grained,” i.e., no exposure in a portfolio accounts for more than an
arbitrarily small share of total exposure. This result holds under very general assumptions on the distribution
of exposure sizes and credit ratings in the portfolio. It allows for variation across obligors in sensitivity to
the systematic risk factor; for systematic risk in recovery rates; and for either actuarial or mark-to-market
notions of loss.

Analysis of rates of convergence to asymptotic VaR is used to design a simple method of approximating
a portfolio-level add-on charge for undiversified idiosyncratic risk. Thus, violation of the second assumption
need not pose a practical problem. There is no similarly simple way to address violation of the single factor
assumption. Regulators ought therefore to be especially cautious in applying risk-bucket capital rules to
portfolios with significant industry and geographic concentrations. Although unlikely to pose a near-term
obstacle to Basel reform, dependence on this assumption may limit the long-term viability of risk-bucket
rules for regulatory capital.
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Recent years have witnessed significant advances in the design, calibration and implementation of port-

folio models of credit risk. Large commercial banks and other financial institutions with significant credit

exposure rely increasingly on models to guide credit risk management at the portfolio level. Models allow

management to identify concentrations of risk and opportunities for diversification within a disciplined and

objective framework, and thus offer a more sophisticated, less arbitrary alternative to traditional lending

limit controls. More widespread and intensive use of models is encouraging a more active approach to port-

folio management at commercial banks, which has contributed to the improved liquidity of markets for debt

instruments and credit derivatives.

Stripped to its essentials, a credit risk model is a function mapping from a parsimonious set of instrument-

level characteristics and market-level parameters to a distribution for portfolio credit losses over some cho-

sen horizon. The model output of primary interest, the “economic capital” required to support the portfolio,

is derived as some summary statistic of the loss distribution. The definition of economic capital in most

widespread use is value-at-risk (“VaR”). Under the VaR paradigm, an institution holds capital in order to

maintain a target rating for its own debt. Associated with the target rating is a probability of survival over

the horizon (say, 99.9% over one year). To be consistent with its target survival probability (denotedq), the

institution must hold reserves and equity capital sufficient to cover up to theqth quantile of the distribution

of portfolio loss over the horizon. Directly or indirectly, model applications to active portfolio management

depend on the capacity to measure how the portfolio capital requirement changes with changes in portfolio

composition.

From a public policy perspective, model-based measurement of economic capital offers a potentially

attractive solution to an increasingly urgent regulatory problem. The current regulatory framework for re-

quired capital on commercial bank lending is based on the 1988 Basel Accord. Under the Accord, the

capital charge on commercial loans is a uniform 8% of loan face value, regardless of the financial strength

of the borrower or the quality of collateral.1 The Accord’s rules are risk-sensitive only in that lower charges

are specified for certain special classes of lending, e.g., to OECD member governments, to other banks

in OECD countries, or for residential mortgages. When the Accord was first introduced, the 8% charge

appeared to be “about right on average” for a typical bank portfolio. Over time, however, the failure to

distinguish among commercial loans of very different degrees of credit risk created the incentive to move

low-risk instruments off balance sheet and retain only relatively high-risk instruments. The financial innova-

tions which arose in response to this incentive have undermined the effectiveness of regulatory capital rules

(see, e.g., Jones 2000) and thus led to current efforts towards reform. It is widely recognized that regulatory

arbitrage will continue until regulatory capital charges at the instrument level are aligned more closely with

underlying risk.

The Basel Committee on Bank Supervision (1999) undertook a detailed study of how banks’ internal

models might be used for setting regulatory capital. The Committee acknowledged that a carefully specified

and calibrated model can deliver a more accurate measure of portfolio credit risk than any rule-based system,

but found that the present state of model development could not ensure an acceptable degree of comparability
1The so-called 8% rule takes a rather broad definition of “capital.” In effect, roughly half this 8% must be in equity capital, as

measured on a book-value basis.
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across institutions and that data constraints prevent validation of key model parameters and assumptions.2 It

seems unlikely, therefore, that regulators will be prepared in the near- to medium-term to accept the use of

internal models for setting regulatory capital. Nonetheless, regulators and industry practitioners appear to

be in broad agreement that a revised Accord should permit evolution towards an internal models approach

as models and data improve.

At present, it appears virtually certain that a reformed Accord will be a ratings-based “risk-bucketing”

system of one form or another. In such a system, banking book assets are grouped into “buckets,” which are

presumed to be homogeneous. Associated with each bucket is a fixed capital charge per dollar of exposure.

At a minimum, one would expect the bucketing system to partition instruments by borrower rating, which

would be externally given by rating agencies under some proposals and internally assigned under others; and

by one or more proxies for seniority/collateral type, which determines loss severity in the event of default.

More complex systems would partition instruments by maturity, country/industry of borrower, and possibly

other characteristics. Regardless of the sophistication of the bucketing scheme, capital charges areportfolio-

invariant, i.e., the capital charge on a given instrument depends only on its own characteristics, and not the

characteristics of the portfolio in which it is held. I take portfolio-invariance to be the essential property of

risk-bucket capital rules.

A regulatory regime based on risk-bucket assignment of capital charges does offer significant advan-

tages. The current Accord is itself a simple risk-bucketing framework. The reformed Accord could intro-

duce additional bucketing criteria and make better use of information in borrower ratings, yet still be viewed

as a natural extension of the current regime. Because the capital charge for a portfolio is simply a weighted

sum of the dollars in each bucket, risk-bucketing systems are relatively simple to administer and need not

impose burdensome reporting requirements. Validation problems are also limited in scope. Should the use

of internal ratings be permitted, the most significant empirical challenge facing supervisors would likely

concern the quality of default probability estimates for internal grades.

Though not often recognized in the debate on regulatory reform, in practice many (if not most) large

banks apply risk-bucketing for allocation of capital at the transaction level. Even at institutions that have im-

plemented models for portfolio management and portfolio-level capital assessment, there may be reluctance

to apply the implied marginal capital requirements to assess hurdle rates for individual transactions. Com-

putational and information systems burdens may be substantial. More important perhaps, line managers are

likely to oppose any performance monitoring system in which a loan booked one day at a profitable credit

spread becomes unprofitable the next due only to changes in the composition of the bank’s overall portfolio.

The need for stability in business operations thus favors portfolio-invariant capital charges at the transaction

level.

Though risk-bucketing may be a necessary “second-best” solution under current conditions, it is nonethe-

less desirable that the bucket capital charges be calibrated within a portfolio model. Consistency with a well-

specified model would bring greater discipline and accuracy to the calibration process, and would provide
2In an industry practitioner response, GARP (1999) acknowledges the obstacles to immediate adoption of an internal models

regulatory regime, but argues that the challenges can be met through an evolutionary, piecemeal approach to regulatory certification
of model components.
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a smoother path of evolution toward an internal-models-based regime. This paper is about the challenges

in models-based calibration of risk-bucket capital charges. In particular, it asks what modeling assumptions

must be imposed so that marginal contributions to portfolio economic capital are portfolio-invariant.

By design, portfolio models do not, in general, yield portfolio-invariant capital charges. To obtain a

distribution of portfolio loss, a model must determine a joint distribution over credit losses at the instrument

level. The latest generation of widely-used models gives structure to this problem by assuming that corre-

lations across obligors in credit events arise due to common dependence on a set ofsystematic risk factors.

Implicitly or explicitly, these factors represent the sectoral shifts and macroeconomic forces that impinge to

a greater or lesser extent on all firms in an economy. A natural property of these models is that the marginal

capital required for a loan depends on how it affects diversification, and thus depends on what else is in the

portfolio.

If economic capital is defined within the value-at-risk paradigm, then the problem has a simple an-

swer. I show that two conditions are necessary and (with a few regularity conditions) sufficient to guarantee

portfolio-invariance: First, the portfolio must be asymptotically fine-grained, in the sense that no single

exposure in the portfolio can account for more than an arbitrarily small share of total portfolio exposure.

Second, there must be only a single systematic risk factor.

The emphasis in this paper is on generality across portfolios and models. The use of asymptotics to

characterize model properties is not new to practitioners, but all previous analyses have been applied to

homogeneous portfolios and with the objective of simplifying computation.3 Banks vary widely in the size

and composition of their portfolios and in the details of their credit risk models. For policy purposes, it is

essential that our results be sufficiently general to embrace this diversity. Indeed, our results are shown to

apply to quite heterogeneous portfolios and across a broad class of credit risk models.

Needless to say, the real world does not give us perfectly fine-grained portfolios. Bank portfolios have

finite numbers of obligors and lumpy distributions of exposure sizes. It is clear that capital charges cali-

brated to the asymptotic case must understate required capital for any given finite portfolio. To assess the

magnitude of this bias, I determine the rate of convergence of credit value-at-risk to its asymptotic limit.

The results apply generally and appear to be new to the literature. As an application, I propose a simple

methodology for assessing a portfolio level add-on charge to compensate for less-than-perfect diversifica-

tion of idiosyncratic risk. Numerical examples suggest that the method works well, so that departures from

asymptotic granularity need not pose a problem in practice for risk-bucket capital rules.

Although it is the standard most commonly applied, value-at-risk is not without shortcomings as a risk-

measure for defining economic capital. Because it is based on a single quantile of the loss distribution, VaR

provides no information on the magnitude of loss incurred in the event that capital is exhausted. From the

perspective of an insurer of deposits (e.g., the FDIC in the US), a more informative summary statistic is

expected excess loss(“EEL”). Under the EEL paradigm, an institution must hold enough capital so that the

expected credit loss in excess of capital is less than or equal to a target loss rate. I consider whether EEL
3Large-sample approximations have been applied to homogeneous portfolios under single risk factor versions of the RiskMetrics

Group’s CreditMetrics (Finger 1999) and KMV Portfolio Manager (Vasicek 1997) in order to obtain computational shortcuts.
Bürgisser, Kurth and Wagner (2000) characterize the asymptotic behavior of a generalized CreditRisk+ model on a sequence of
portfolios withn statistically identical copies of a fixed heterogeneous portfolio.
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delivers portfolio-invariant capital charges for an asymptotic portfolio in a single-factor setting. Unlike VaR,

it does not, and therefore EEL is unsuited as a soundness standard for deriving risk-bucket capital charges.

Section 1 sets out a general framework for the class of risk-factor models in current use under a book-

value definition of credit loss. Section 2 presents the key results for VaR for this class of models. In Section

3, these results are shown to apply equally to the case of “multi-state” models in which loss is measured

on a market-value basis. The rate of convergence of portfolio VaR to its asymptotic limit is analyzed in

Section 4. In Section 5, I show that measures of economic capital based on expected excess loss cannot

be made portfolio-invariant, and provide numerical examples of the resulting discrepancies. Concluding

remarks focus on the assumption of a single systematic risk factor, which is empirically untenable and

yet an unavoidable precondition for portfolio-invariant capital charges. While this assumption ought to be

acceptable in the pursuit of achievable and substantive near- to medium-term regulatory reform, it may limit

the long-term viability of ratings-based risk-bucket rules for regulatory capital.

1 A general model framework under book-value accounting

Under anactuarial, or book-value, definition of loss, credit loss arises only in the event of obligor default.

Change in market value due to rating downgrade or upgrade is ignored. This is the simplest framework for

our purposes, because we need only be concerned with default risk and with uncertainty in the recovery

value of an asset in the event of obligor default.

An essential concept in any risk-factor model is the distinction betweenunconditionalandconditional

event probabilities. An obligor’s unconditional default probability, also known as its expected default fre-

quency orPD, is the probability of default before some horizon given all information currently observable.

The conditional default probability is the PD we would assign the obligor if we also knew what the realized

value of the systematic risk factors at the horizon would be. The unconditional PD is the average value of

the conditional default probability across all possible realizations of the systematic risk factors. To take an

example, consider a simple credit cycle in which the systematic risk factor takes only three values. The “bad

state” corresponds to a recession at the risk horizon, the “good state” to an expansion, and the “neutral state”

to ordinary times. Say that we currently are in a neutral state, and assign probabilities of1/4, 1/2 and1/4
to the three states (respectively) at the risk horizon. Consider an obligor which defaults with probability 2%

in the event of a bad state, probability 1% in the neutral state, and probability 0.4% in the event of a good

state. The “conditional default probability” is then 0.4%, 1%, or 2%, depending on which horizon state we

condition upon. The PD is the probability-weighted average default rate, or 1.1%.

Let X denote the systematic risk factors (possibly multivariate), which are drawn from a known joint

distribution. These risk factors may be identified in some models with specific observable quantities, such

as macroeconomic variables or industrial sector performance indicators, or may be left abstract. Regardless

of their identity, it is assumed that all correlations in credit events are due to common sensitivity to these

factors. Conditional onX, the portfolio’s remaining credit risk is idiosyncratic to the individual obligors in

the portfolio. Letpi(x) denote the probability of default for obligori conditional on realizationx of X.

This general framework for modeling default is compatible with all of the best-known industry models
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of portfolio credit risk, including the RiskMetrics Group’s CreditMetrics, Credit Suisse Financial Product’s

CreditRisk+, McKinsey’s CreditPortfolioView, and KMV Portfolio Manager. The similarity to CreditRisk+

is easiest to see because that model is written in the language of conditional default probabilities. To ob-

tain CreditRisk+ within our framework, assume that the risk factorsX1, . . . ,XK are independent gamma-

distributed random variables with mean one and variancesσ2
1 , . . . , σ

2
K . Let p̄i denote the PD of obligori,

and specifypi(x) as:

pi(x) = p̄i

(
1 +

K∑
k=1

wik(xk − 1)

)
(1)

wherewi is a vector of factor loadings with sum in[0, 1].4

CreditMetrics, which is based on a simplified Merton model of default, also can be cast within a condi-

tional probability framework. It is assumed that the vector of risk factorsX is jointly distributed N(0,Ω).
Associated with each obligor is a latent variableRi which represents the return on the firm’s assets.Ri is

given by

Ri = ξiεi −Xwi, (2)

where theεi are iid N(0, 1) white noise (representing obligor-specific risk) andwi is a vector of factor

loadings.5 Without loss of generality, the weightswi andξi are scaled so thatRi is mean zero, variance

one.6 A borrower defaults if and only if its asset return falls below a threshold valueγi.

To obtain the conditional default probability functionpi(x), observe that default occurs if and only if

εi ≤ (γi +Xwi)/ξi. Therefore, conditional onX=x, default byi is an independent Bernoulli event with

probability

pi(x) = Pr(εi ≤ (γi + xwi)/ξi) = Φ((γi + xwi)/ξi) (3)

whereΦ is the standard normal cdf. To calibrate the parameterγi, note that the unconditional probability of

default isΦ(γi), soγi = Φ−1(p̄i), wherep̄i is the PD for obligori.7 See Gordy (2000) for a more detailed

derivation of these two models and their representation in terms of conditional probabilities.

In some industry models, it is assumed that loss given default (“LGD”) is known and non-stochastic.

Of the credit VaR models in widespread use, those that do allow for stochastic LGD always take recovery

risk to be purely idiosyncratic. In practice, LGD not only may be highly uncertain, but may also be subject

to systematic risk. For example, the recovery value of defaulted commercial real estate loans depends on

the value of the real estate collateral, which is likely to be lower (higher) when many (few) other real estate
4Strictly speaking, this functional form is invalid because it allows conditional probabilities to exceed one. In practice, this

problem is negligible for high and moderate quality portfolios and reasonable calibrations of theσ2
k.

5The usual way this is specified hasXwi added, not subtracted. The change in sign here is convenient because it implies that
thepi(x) function will be increasing inx, but does not otherwise change the statistical properties of the model.

6Specifically, the weightsξi are given by(1 − w′
iΩwi)

1/2.
7By construction, the unconditional distribution ofRi is N(0, 1), so the probability thatRi ≤ γi is Φ(γi).
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projects have failed. In recent months, some progress has been made in capturing this effect. Frye (2000)

develops an extension of a one-factor CreditMetrics model in which collateral values (and thus recoveries)

are correlated with the same systematic risks that drive default rates. B¨urgisser et al. (2000) extend the

CreditRisk+ model to include a systematic factor for recovery risk that is orthogonal to the systematic

factors for default risk.

In order to accommodate systematic and idiosyncratic recovery risk, I takeloss, rather than merely

default status, as the primitive outcome variable. LetAi be the exposure to obligori; these are taken to

be known and non-stochastic.8 Let the random variableUi denote loss per dollar exposure. In the event of

survival,Ui = 0. Otherwise,Ui is the percentage LGD on instrumenti, which is assumed to be bounded

in the unit interval. The assumption of conditional independence of defaults is extended to conditional

independence of theUi.

For a portfolio ofn obligors, define theportfolio loss ratioLn as the ratio of total losses to total portfolio

exposure,9 i.e.,

Ln ≡
∑n

i=1 UiAi∑n
i=1Ai

. (4)

For a givenq ∈ (0, 1), value-at-risk is defined as theqth percentile of the distribution of loss, and is denoted

VaRq[Ln]. Letαq(Y ) denote theq-th quantile of the distribution of random variableY , i.e.,

αq(Y ) ≡ inf{y : Pr(Y ≤ y) ≥ q}. (5)

In terms of this more general notation, we haveVaRq[Ln] = αq(Ln).

2 Asymptotic loss distribution under book-value accounting

Imagine that the bank selects its portfolio as a large but finite subset of an infinite sequence of lending

opportunities. To guarantee that idiosyncratic risk vanishes as more assets are added to the portfolio, the

sequence of exposure sizes must neither blow up nor shrink to zero too quickly. I assume that

(A-1) theAi are a sequence of positive constants such that (a)
∑n

i=1Ai ↑ ∞ and (b) there exists aζ > 0
such thatAn/

∑n
i=1Ai = O(n−(1/2+ζ)).10

The restrictions in (A-1) are sufficient to guarantee that the share of the largest single exposure in total

portfolio exposure vanishes to zero. As a practical matter, the restrictions are quite weak and would be
8In practice, it need not be so simple. If the instrument is a coupon bond, book-value exposure is simply the face value. Much

bank lending, however, is in the form of lines of credit which give the borrower some control over the exposure size. Borrowers do
tend to draw down unutilized credit lines as they deteriorate towards default. If we assume that uncertainty inA is idiosyncratic
conditional on the state of the obligor and is of bounded variance, then all the conclusions of this paper continue to hold. In this
case, we interpretAi as theexpecteddollar exposure in the event of obligor default.

9For simplicity, I assume that the portfolio contains only a single asset for each obligor. Under actuarial treatment of loss,
multiple assets of a single obligor may be aggregated into a single asset without affecting the results.

10For definition of the order notationO(·) see Definition 2.5 in White (1984).
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satisfied by any conceivable real-world large bank portfolio. For example, they are satisfied if all theAi are

bounded from below by a minimum sizeA− > 0 and from above by a maximum sizeA+ <∞.

Our first result is that, under quite general conditions, the conditional distribution ofLn degenerates to

its conditional expectation asn→ ∞. More formally, we can show that

Proposition 1

If theAi satisfy (A-1), then, conditional onX=x, Ln − E[Ln|x] → 0, almost surely.

The proof, which relies mainly on a strong law of large numbers, is given in Appendix A. Note that there

is no restriction on the relationship betweenAi and the distribution ofUi, so there is no problem if, for

example, high quality loans tend also to be the largest loans. Also, no restrictions have yet been imposed on

the number of systematic factors or their joint distribution.

In intuitive terms, Proposition 1 says that as the exposure share of each asset in the portfolio goes to

zero, idiosyncratic risk in portfolio loss is diversified away perfectly. In the limit, the loss ratio converges

to a fixed function of the systematic factorX. We refer to this limiting portfolio as “infinitely fine-grained”

or as an “asymptotic portfolio.” An implication is that, in the limit, we need only know the unconditional

distribution ofE[Ln|X] to answer questions about the unconditional distribution ofLn. For example, if we

wish to know the variance of the loss ratio, we can look to the variance ofE[Ln|X]:

Proposition 2

If theAi satisfy (A-1), thenV[Ln] − V[E[Ln|X]] → 0.

Proof is in Appendix A.

A more important result is, in essence, that for anyq ∈ (0, 1), the qth quantile of the unconditional

loss distribution approaches theqth quantile of the unconditional distribution ofE[Ln|X] asn → ∞. Our

desired result is to have

αq(Ln) − αq(E[Ln|X]) → 0. (6)

For technical reasons, however, we are limited to a slightly restricted variant on this result. LetFn denote

the cdf ofLn. We can show:

Proposition 3

If, conditional onX=x, (Ln − E[Ln|x]) → 0 a.s. for all x, then for anyε > 0

Fn(αq(E[Ln|X]) + ε) → [q, 1] (7)

Fn(αq(E[Ln|X]) − ε) → [0, q]. (8)

The proof is in Appendix B. For all practical purposes, this proposition ensures that equation (6) will

hold.11 The literal interpretation of Proposition 3 is that theqth quantile ofE[Ln|X] plus an arbitrarily
11The difference has to do with the possibility that the unconditional distributions for the{E[Ln|X]} will permit jump points (or

arbitrarily steep slope) at the quantilesαq(E[Ln|X]) asn → ∞. This possibility is purely a theoretical matter, and would never
arise in practical applications.
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small “smidgeon” (i.e.,ε) is guaranteed, in the limit, to cover (or, at least, to come arbitrarily close to

covering)q or more of the distribution of loss. Similarly, theqth quantile ofE[Ln|X] less the smidgeon

is guaranteed, in the limit, to fail to cover theqth quantile of the distribution of loss (or, at least, to come

arbitrarily close to so failing).

The importance of Proposition 3 is that it allows us to substitute the quantiles ofE[Ln|X] (which typi-

cally are easy to calculate) for the corresponding quantiles of the loss ratioLn (which are hard to calculate)

as the portfolio becomes large. It should be emphasized that we have obtained this result with very minimal

restrictions on the make-up of the portfolio and the nature of credit risk. The assets may be of quite varied

PD, expected LGD, and exposure sizes. We have bounded the support of theUi to the unit interval, but have

otherwise not restricted the behavior of the conditional expected loss functions (i.e., theE[Ui|x]).12 These

functions may be discontinuous and non-monotonic, and can vary in form from obligor to obligor. More

importantly, we have placed no restrictions on the vector of risk factorsX. It may be a vector of any finite

length and with any distribution (continuous or discrete).

The quantiles ofE[Ln|X] take on a particularly simple and desirable asymptotic form when we impose

two additional restrictions:

(A-2) the systematic risk factorX is one-dimensional; and

(A-3) the functionsψi(x) ≡ E[Ui|x] are non-decreasing.

These assumptions lead to:

Proposition 4

If (A-2) and (A-3) are satisfied, thenαq(E[Ln|X]) = E[Ln|αq(X)].

Proof: Define

Ψn(x) = E[Ln|x] =
∑n

i=1 ψi(x)Ai∑n
i=1Ai

. (9)

Assumption (A-3) guarantees thatΨn(x) is non-decreasing for allx. If X ≤ αq(X), thenΨn(X) ≤
Ψn(αq(X)), so Pr(Ψn(X) ≤ Ψn(αq(X))) ≥ Pr(X ≤ αq(X)) ≥ q. If Ψn(X) < Ψn(αq(X)), then

X < αq(X), soPr(Ψn(X) < Ψn(αq(X))) ≤ Pr(X < αq(X)) < q. Therefore,

inf{y : Pr(Ψn(X) ≤ y) ≥ q} = Ψn(αq(X)).

QED

Taken together, Propositions 1, 3 and 4 imply a simple and powerful rule for determining capital require-

ments. For asseti, set capital per dollar book value (inclusive of expected loss) toci ≡ ψi(αq(X)) + ε, for

some arbitrarily smallε.13 Observe that this capital charge depends only on the characteristics of instrument
12Technically, the CreditRisk+ model allowsUi to exceed one, because it approximates the Bernoulli distribution of the default

event as a Poisson distribution. To accommodate CreditRisk+, we could loosen even this restriction to a requirement that theUi

have bounded variance.
13In most practitioner discussions, it is assumed that expected loss is charged against the loan loss reserve and that “capital”

refers only to the amount held against unexpected loss. In this paper, “capital” refers to the gross amount set aside.
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i and thus this rule is portfolio-invariant. Portfolio losses exceed capital if and only if

n∑
i=1

UiAi >
n∑
i=1

ciAi. (10)

Given our rule forci and the definition ofLn,

Pr

(
n∑
i=1

UiAi >

n∑
i=1

ciAi

)
= Pr


Ln >

(
n∑
i=1

Ai

)−1 n∑
i=1

(ψi(αq(X)) + ε)Ai




= Pr(Ln > E[Ln|αq(X)] + ε) → [0, 1 − q].

Thus, capital is sufficient, in the limit, so that the probability of portfolio credit losses exceeding portfolio

capital is no greater than1 − q, as desired.

If additional regularity conditions are imposed, the insolvency probability converges to1 − q exactly

for ε = 0. Define the indicator functionIi(δ,B) for obligor i, open setB andδ > 0 as equal to one if

ψ′
i(x) > δ for all x ∈ B, and zero otherwise.

(A-4) The systematic factorX is continuous, the functionsψi are continuous, and there existsδ > 0,

ν > 0, n0 <∞, and an open intervalB containingαq(X) such that

∑n
i=1 Ii(δ,B)Ai∑n

i=1Ai
> ν, ∀n > n0.

This condition, which in practice would always be satisfied, is sufficient to guarantee that the asymptotic

portfolio loss cdf is smooth and increasing in the neighborhood of itsqth percentile value, so the technical

caveats of Proposition 3 can be circumvented. In Appendix C, I show that

Proposition 5

If assumptions (A-1), (A-2), (A-3) and (A-4) hold, thenPr(Ln ≤ E[Ln|αq(X)]) → q.

Therefore, for an infinitely fine-grained portfolio, the proposed portfolio-invariant capital rule provides a

solvency probability of exactlyq.

Portfolio-invariance depends strongly on the asymptotic assumption and on assumptions (A-2) and (A-

3). Portfolios that are not asymptotically fine-grained contain undiversified idiosyncratic risk, which implies

that marginal contributions to VaR depend on what else is in the portfolio. Without (A-3), theqth percentile

of the distribution of loss need not be associated with theqth percentile of the distribution ofX. The

quantiles of the loss distribution would then depend in complex ways on theψi functions of the individual

obligors. In practice, assumption (A-3) is relatively harmless, because obligors with counter-cyclical credit

risk are relatively rare. Indeed, this assumption is imposed by all the well-known latest generation vendor

models. Moreover, (A-3) could be relaxed to permit the use of hedging instruments (such as credit deriva-

tives on obligors in the portfolio), so long as the portfolio conditional expected loss functionΨn(x) retained

the desired monotonicity properties.
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Assumption (A-2), however, is much less innocuous from an empirical point-of-view. It is indeed essen-

tial to portfolio invariance. If there were, say, two risk factors, and obligors could differ in their sensitivity

to each factor, then the realizations(x1, x2) associated with a given quantile of the loss distribution would

depend on the particular set of obligors in the portfolio. In intuitive terms, the appropriate capital charge

for a loan to a heavily-X1-sensitive borrower would depend on whether the other obligors in the portfolio

were predominantly sensitive toX1 (in which case the loan would add little diversification benefit) or to

X2 (in which case the diversification benefit would be larger). To take a simple example, letX1 represent

the US business cycle andX2 the European business cycle. Consider the merger of a strictly domestic US,

asymptotically fine-grained portfolio with another asymptotically fine-grained bank portfolio. If the second

portfolio were also exclusively US, then no diversification benefit would ensue, and required capital for the

merged portfolio should be the sum of the capital charges on the two portfolios. However, if the second

portfolio contained European obligors, then there would be a diversification benefit (as long asX1 andX2

were not perfectly co-monotonic), and the merger should result in reduced total VaR. Therefore, capital

charges could not be portfolio-invariant.

Finally, observe that “bucketing” has not appeared, per se, in the derivation. Indeed, theψi functions

need not even share a common form across obligors. Sorting obligors into a finite number of statistically ho-

mogeneous buckets is helpful for purposes of calibration from data, but is not needed for portfolio-invariant

capital charges to be obtained.14

3 Asymptotic loss distribution under mark-to-market valuation

Actuarial models are simple to calibrate and understand, and fit naturally with traditional book-value ac-

counting applied to bank loan books. However, much of the credit risk is missed, especially for long-dated

highly-rated instruments. Because losses are deemed to arise only in the event of default, no credit loss is

recognized when, say, a two-year AA-rated loan downgrades after one year to grade BB. Under a mark-to-

market (MTM) notion of loss, credit risk includes the risk of downward (or upward) rating migration, short

of default, when the instrument’s maturity extends beyond the risk horizon. Even for institutions which

report on a book-value basis, it may be desirable to calculate capital charges within a MTM framework in

order to capture the additional risk associated with longer instrument maturity.

“Loss” is an ambiguous construct in a mark-to-market setting. I follow one widely-used convention in

defining the loss rateUi on asseti as the difference between expected and realized value at the horizon,

discounted by the risk-free rate and divided by current market value.15 For example,ui = 0.2 represents

a 20% loss, andui = −0.05 represents a 5% gain. Other definitions can be applied without changing the

results below. I redefine “exposure”Ai as the current market value.
14Multi-state models such as CreditMetrics and CreditPortfolioView typically calibrate PDs to a finite set of rating grades, but

the factor loadingswi may be set at the individual obligor level. In this case, each obligor would comprise its own “bucket.” In the
KMV model, there is a continuum of “rating grades,” so buckets do not arise in any natural way.

15Coupon payments, if any, are assumed to be accrued to the horizon at the risk-free rate. Some convention also must be imposed
on which intra-horizon cashflows are received on defaulting assets. In practice, how coupons are handled has little effect on the
loss distribution, and no qualitative effect on the asymptotics.
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Credit risk arises due to uncertainty inU . As before, I assume a vector of systematic risk factorsX

and that theUi are conditionally independent. The parameterization and calibration of theψi(x) ≡ E[Ui|x]
functions can draw on existing industry models such as CreditMetrics. Say, for example, that we have a

rating system withG non-default grades (gradeG + 1 denoting default), and for each obligori we have a

set of unconditional transition probabilities̄pig for gradeg at the horizon. From these we calculate threshold

valuesγig for obligor i’s asset returnRi (see equation (2)), such that obligori defaults ifRi ≤ γi,G, and

transits to “live” gradeg if γi,g < Ri ≤ γi,g−1. The variables(X, ε1, ε2, . . . , εn) are iid N(0, 1). Therefore,

the conditional transition probabilities are given in CreditMetrics by

pig(x) = Φ
(

(γi,g−1 + xwi)/
√

1 − w2
i

)
− Φ

(
(γi,g + xwi)/

√
1 − w2

i

)
, (11)

and the unconditional transition probabilities determine the thresholds asγi,g = Φ−1(p̄i,g−1 + . . .+ p̄i,G).
Consider a zero-coupon instrument maturing sometime after the horizon. Assume the current valueAi

is known, and letvi,g(x) be the value of instrumenti at the horizon conditional on the obligor migrating to

ratingg. In standard implementations of CreditMetrics, pricing at the horizon is done by discounting future

contractual cash flows, where the spreads for each grade are taken as fixed and known. In principle, however,

we can allow spreads to be non-stochastic functions ofX. The conditional expected mark-to-market value

at the horizon is

MTMi(x) =
G∑
g=1

vig(x)pig(x) + Āi(1 − E[LGDi|x])pi,G+1(x), (12)

whereĀi is the size of the bank’s legal claim on the obligor in the event of a default. Coupons can easily be

accommodated in this pricing formula as well with some additional notation. The conditional expected loss

functionsψi(x) are then given by

ψi(x) =
exp(−rTh)

Ai
(E[MTMi(X)] − MTMi(x)) , (13)

whereTh is the time to horizon andr is the risk-free yield for termTh.

The results of the previous section can be adapted to a mark-to-market setting without difficulty. In

contrast to the actuarial case, MTM loss is not bounded from below by zero (e.g., if the obligor’s rating

improves, there typically will be a gain in value). In principle, it need not be bounded from above either. To

guarantee that the convergence properties of Section 2 will continue to hold, I assume that

(A-5) all conditional higher moments of loss exist and are bounded; i.e., for eachj ≥ 2, there exists a finite

constantµj such thatE[|Ui|j |x] ≤ µj for all realizationsx and for all instrumentsi.

For a given portfolio ofn assets,Ln, as defined in equation (4), is the discounted portfolio market-valued

credit loss at the horizon as a percentage of current market value. I find that all of the Propositions of Section

2 continue to hold, as stated, when (A-5) is imposed as well. Indeed, the proofs in the appendix explicitly

accommodate the mark-to-market case. The results is no way depend on the assumptions and conventions
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of CreditMetrics, which are described above for illustrative purposes.16 By the same logic as before, the

appropriate asymptotic capital charge per dollar current market value for asseti is simplyψi(αq(X)).

4 Capital adjustments for undiversified idiosyncratic risk

No portfolio is ever infinitely fine-grained: real-world portfolios have finite numbers of obligors and lumpy

distributions of exposure sizes. Large portfolios of consumer loans ought to come close enough to the

asymptotic ideal that this issue can safely be ignored, but we ought not to presume the same for even the

largest commercial loan portfolios. Unless risk-bucket capital rules are to be abandoned for a full-blown

internal models approach, we require a methodology for assessing a capital add-on to cover the residual

idiosyncratic risk that remains undiversified in a portfolio. While no simple methodology can be perfect,

the same mathematical tools used to analyze the asymptotic behavior of VaR can also provide guidance in

constructing a “granularity adjustment” to required capital.

To develop an approximation for the effect of undiversified idiosyncratic risk on portfolio VaR, I analyze

how quickly VaR converges to its asymptotic limit as a portfolio grows. This question is most naturally and

precisely framed within the context of a homogeneous portfolio, in which each instrument has the same

conditional expected loss functionψ(x) and the same exposure size. For this case, I find:

Proposition 6

If the portfolio is statistically homogeneous, the functionψ(x) is continuous, arbitrarily differentiable, and

increasing, and the systematic risk factorX is drawn from an arbitrarily differentiable continuous distribu-

tion, then VaR converges to its asymptotic limit at rate1/n, that is,

αq(Ln) = ψ(αq(X)) +O(n−1).

To prove this proposition, one first shows that the cumulants of the distribution ofLn approach the cumulants

of E[Ln|X] at rate1/n. One then applies a generalized Cornish-Fisher expansion to show that the quantiles

converge at the same rate. Details are in Appendix D.

Roughly speaking, Proposition 6 says that the difference between the VaR for a given homogeneous

portfolio and its asymptotic approximationE[Ln|αq(X)] is proportional to1/n. This suggests that the

accuracy of the asymptotic capital rule can be improved by introducing a “granularity add-on charge” that

is inversely proportional to the number of obligors in the portfolio. To calibrate such an add-on charge for a

homogeneous portfolio, we need to find a constant of proportionalityβ such thatE[Ln|αq(X)] + β/n is a

good approximation toVaRq[Ln].
Of course, Proposition 6 is itself an asymptotic result. When we say that convergence is at rate1/n,

we are saying thatfor large enoughn the gap between VaR and its asymptotic approximation shrinks by

half whenn is doubled. Short of running the credit VaR model, there is no way to say whether a givenn is
16In the spirit of KMV Portfolio Manager, for example, one could replace equation (11) with the conditional density function

for the default probability at the horizon. The summation in equation (12) would be replaced by an integral, and thevig would be
obtained using risk-neutral valuation. Valuation in the default state in equation (12) also would be modified.
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“large enough” for this relationship to hold. To see whether our “1/n rule” works well for realistic values

of n and realistic model calibrations, I examine the behavior of VaR in an extended version of CreditRisk+.

The virtue of CreditRisk+ for this exercise is that it has an analytic solution. We not only can execute the

model for anyn very quickly, but also avoid Monte Carlo simulation noise in the results. However, the

standard CreditRisk+ model assumes fixed loss given default, and so ignores a potentially important source

of volatility.17 For the special case of a homogeneous portfolio, it is not difficult to augment the model to

allow for idiosyncratic recovery risk.

As in the standard CreditRisk+, assume that the systematic risk factorX is gamma-distributed with

mean one and varianceσ2. Each obligor has the same default probabilityp̄ and factor loadingw. Each

facility in the portfolio has identical exposure size, which is normalized to one, and identical expected LGD.

The functional form for conditional expected loss function is

ψ(x) = E[LGD] · p̄(1 + w(x− 1)). (14)

To introduce idiosyncratic recovery risk, assume LGD for each obligor is drawn from a gamma distribution

with meanλ and varianceη2. This specification is convenient because the sum ofm independent and

identical gamma random variables is gamma-distributed with meanmλ and variancemη2. LetGm denote

the gamma cdf with this mean and variance. Letπm denote the probability that there will bem defaults in

the portfolio; these probabilities are calculated in the usual way in CreditRisk+. The probability thatLn ≤ y

can then be decomposed as

Pr(Ln ≤ y) =
∞∑
m=0

πmGm(ny). (15)

Long beforem approachesn, theπm become negligibly small, so numerical calculation of equation (15)

presents no difficulty. A minor disadvantage of this specification is that it allows LGD to exceed one.

However, so long asη is not too large, aggregate losses in the portfolio will be well-behaved, so the problem

can be ignored.

Calibration is intended to be qualitatively faithful to available data. When CreditRisk+ is calibrated to

rating agency historical performance data, as in Gordy (2000), one finds a negative relationship betweenp̄

andw. By contrast, when a Merton model such as CreditMetrics is calibrated to these data, there is no strong

relationship between PD and factor loading. This makes sense, as there is no strong reason to expect that

average asset-value correlation should vary systematically across rating grades. To make use of this stylized

fact in our calibration, I choose a constant factor loading ofwcm = 0.35 in CreditMetrics, and calculate

a within-grade default correlation for each grade. Shifting back to CreditRisk+, I set a conservative but

reasonable value ofσ = 2 for the volatility of X, and then calibratew for each rating grade so that the

within-grade default correlation matches the value from CreditMetrics.18 The remainder of the calibration
17The standard model also implies a discrete loss distribution. Asn increases, the “steps” in the loss distribution are re-aligned,

which causes local violations of monotonicity in the relationship betweenn and VaR.
18See Gordy (2000) for more details on the choice ofσ and on using within-grade default correlations for consistent calibration

across the two models.
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exercise is straightforward. I choose stylized values for the default probabilities, and assume that LGD has

mean 0.4 and standard deviation 0.2. The chosen coverage target isq = 0.995 of the loss distribution.

Results are shown in Table 1 for six rating grades. The final column (n = ∞) provides the asymptotic

capital charge, so the difference between each column and the final column represents the “ideal” granularity

add-on. Even for portfolios of onlyn = 200 homogeneous obligors, granularity add-ons are small in the

absolute sense (under 60 basis points for the CCC portfolio and under 35 basis points for the investment

grade portfolios). However, the add-ons can be large relative to the asymptotic capital charge for investment

grade obligors. For a portfolio of 200 homogeneous AA loans, the granularity add-on is roughly double the

asymptotic charge.

Figure 1 demonstrates the relationship between the ideal granularity add-on and1/n for each homoge-

neous portfolio. For the low speculative grades, the predicted linear relationship holds down ton = 200.19

For the high investment grade portfolios, there are small but noticeable departures from the predicted linear

relationship whenn < 1000. The slope of each line (at high values ofn) is the appropriate “constant of

proportionality”β for the corresponding portfolio. We observe thatβ is higher for lower quality portfolios,

but that values are bounded in a reasonably narrow range (e.g., the appropriateβ for a portfolio of B rated

facilities is only twice that of a portfolio of A rated facilities). Because departures from linearity are in the

concave direction, a granularity adjustment calibrated to the asymptotic slope would slightly overshoot the

theoretically optimal add-on for smaller portfolios.

In the case of a non-homogeneous portfolio, determining an appropriate granularity add-on is necessarily

more complex and less rigorously founded. However, a simple two-step method appears to work quite well.

The first step is to map the actual portfolio to a homogeneous “comparable portfolio” by matching moments

of the loss distribution. The second step is to determine the granularity add-on for the comparable portfolio.

The same add-on is applied to the capital charge for the actual portfolio.

When the portfolio can be divided into homogeneous buckets, the matching procedure is quite simple

and imposes minimal reporting requirements. Now consider a heterogeneous portfolio ofn lending facilities

divided amongB buckets. Within each bucketb, every facility has the same PD̄pb, factor loadingwb,

expected LGDλb and LGD volatilityηb. Exposure sizesAi are allowed to vary across facilities in a bucket.

To measure the extent to which bucketb exposure is concentrated in a small number of facilities, we require

the within-bucket Herfindahl index given by20

Hb ≡
∑

i∈bA
2
i(∑

i∈bAi
)2 .

The higher isHb, the more concentrated is the exposure within the bucket, so the more slowly idiosyncratic

risk is diversified away. Finally, letsb denote the share of total portfolio exposure held in bucketb, i.e.,

sb ≡
∑

i∈bAi∑
iAi

.

19The slope between each plotted point is constant to six significant digits for both B and CCC portfolios.
20The Herfindahl index is a measure of concentration in very widespread use in anti-trust analysis, and should be familiar to

many practitioners.
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Table 1: Convergence of Quantiles of the Loss Ratio∗

VaRq[Ln] for values ofn
p̄ w 200 500 1000 1500 2000 3000 5000 ∞

AA 0.03 0.933 0.402 0.254 0.198 0.178 0.168 0.158 0.149 0.135
A 0.06 0.850 0.542 0.376 0.315 0.294 0.282 0.271 0.262 0.248

BBB 0.20 0.715 1.039 0.848 0.780 0.756 0.745 0.733 0.723 0.709
BB 1.25 0.526 3.770 3.553 3.475 3.449 3.436 3.423 3.412 3.397
B 6.25 0.369 13.100 12.834 12.745 12.716 12.701 12.686 12.675 12.657

CCC 17.50 0.265 27.937 27.609 27.499 27.463 27.444 27.426 27.411 27.390
*: Default probabilities and VaR expressed in percentage points. Simulations assumeq = 0.995, σ = 2, wcm = 0.35, λ = 0.4 andη = 0.2.
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Figure 1: Granularity Add-on as Linear Function of1/n
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The goal is to construct the comparable portfolio as a portfolio ofn∗ equal-sized facilities with common

PD p̄∗, factor loadingw∗, and LGD parametersλ∗ andη∗. In principle, a wide variety of moment restrictions

could be used to do the mapping, but it seems best to choose moments with intuitive interpretation. The first

two restrictions equate exposure-weighted expected default rate and expected portfolio loss rate:

p̄∗ =
B∑
b=1

p̄bsb and λ∗p̄∗ =
B∑
b=1

λbp̄bsb. (16)

Thus,λ∗ is the expected loss rate divided by the expected default rate; i.e.,

λ∗ =
∑B

b=1 λbp̄bsb∑B
b=1 p̄bsb

. (17)

The remaining moment restrictions equate across the actual and comparable portfolios the contribution

to loss variance from different sources of risk. The contribution of systematic risk (i.e.,V[E[L|X]]) takes

the simple form

V[E[Ln|X]] = σ2

(
B∑
b=1

λbp̄bwbsb

)2

V[E[L∗|X]] = σ2(λ∗p̄∗w∗)2,

which implies

w∗ =
∑B

b=1 λbp̄bwbsb∑B
b=1 λbp̄bsb

. (18)

Note thatw∗ is simply an expected-loss-weighted average of thewb.

The contribution of idiosyncratic risk to loss variance (i.e.,E[V[Ln|X]]) works out to

E[V[Ln|X]] =
B∑
b=1

(
λ2
b(p̄b(1 − p̄b) − (p̄bwbσ)2) + p̄bη

2
b

)
Hbs

2
b

E[V[L∗|X]] =
1
n∗
(
λ∗2(p̄∗(1 − p̄∗) − (p̄∗w∗σ)2) + p̄∗η∗2

)
.

Terms containingλ2(p̄(1 − p̄)− (p̄wσ)2) represent the contribution of idiosyncratic default risk, and terms

containingp̄η2 represent the contribution of idiosyncratic recovery risk. By matching these two contribu-

tions separately, I get the final two restrictions needed for identification. The number of exposures in the

comparable portfolio works out to

n∗ =

(
B∑
b=1

ΛbHbs
2
b

)−1

(19)
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where

Λb ≡
λ2
b(p̄b(1 − p̄b) − (p̄bwbσ)2)

λ∗2(p̄∗(1 − p̄∗) − (p̄∗w∗σ)2)
.

The form of equation (19) allowsn∗ to be interpreted as an inverse measure of weighted exposure concen-

tration. Finally, the variance of LGD for the comparable portfolio is given by

η∗2 =
n∗

p̄∗

B∑
b=1

η2
b p̄bHbs

2
b . (20)

The remaining step is to determine the constant of proportionalityβ∗ for the comparable homogeneous

portfolio. In principle, this constant ought to be estimated directly for each parameter set(p̄∗, w∗, λ∗, η∗).
The necessary calculations could be automated in a spreadsheet, and should require very little time to ex-

ecute. In practice, however, the need for operational transparency dictates that we calibrate a simple rule

for β∗ as a function of(p̄∗, w∗, λ∗, η∗). Assuming that bucket factor loadings and LGD volatilities are

themselves calibrated as functions of bucket PD and expected LGD, respectively, the rule can perhaps be

expressed as a lookup table mapping(p̄∗, λ∗) to β∗.

Matching lower-order moments gives no guarantee that the loss distribution for the comparable portfolio

will display higher-order moments very close to those of the original heterogeneous portfolio. Tail quantiles

of the loss distribution are sensitive to higher-order moments, so the performance of the methodology needs

to be confirmed on a range of empirically plausible portfolios. As an example, I construct a portfolio of 1000

obligors divided equally across four buckets. The buckets represent high investment grade, low investment

grade, high speculative grade and moderate to low speculative grade. Factor loadings are calibrated as in

Table 1. Expected LGDs for the buckets are set to 0.2, 0.3, 0.4, and 0.5, respectively, and the LGD volatility

is set (rather generously) toηb =
√
λb(1 − λb). Table 2 displays the bucket-level parameters.

Table 2: Bucket-level Parameters of Stylized Portfolio∗

p̄ w λ η

1 0.05 0.871 0.2 0.400
2 0.50 0.618 0.3 0.458
3 1.00 0.548 0.4 0.490
4 5.00 0.391 0.5 0.500

*: Default probabilities in percentage points.

Exposure size for facilityi is set toi4; i.e.,Ai is $1 for the first exposure, $16 for the second, $81 for

the third, and so on. The exposures are assigned to buckets by turn. The first exposure is assigned to Bucket

4, the second to Bucket 3, the third to Bucket 2, the fourth to Bucket 1, the fifth to Bucket 4, and so on.

Looking at the portfolio as a whole, I find that the largest 10% of exposures account for roughly 40% of total

exposure, which matches the empirical rule of thumb reported by Carey (forthcoming) for concentration of
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outstandings. Also, portfolio exposure is roughly split between investment and speculative grades, which

appears to be typical of a commercial loan portfolio at a large bank.21

I first obtain parameters for the comparable homogeneous portfolio. The comparable portfolio has

n∗ = 372.0 obligors, which is under 40% of the obligor count of the original portfolio.22 Each obligor has

PD of 1.63% and factor loadingw∗ = 0.4245. Loss given default has expected value 0.467 and volatility

0.502. By construction, the comparable portfolio matches the original portfolio in its expected loss rate of

0.760%. For each portfolio, the standard deviation of the loss rate is 0.787%.

I next obtain the granularity add-on parameterc for the comparable portfolio. For the purpose of this

illustration, I use equation (15) to calculate the loss distribution for homogeneous portfolios ofn = 3000
andn = 4000 facilities with parameters(p̄∗, w∗, λ∗, η∗), then estimate the slope parameterβ∗ for coverage

targetq as

β∗q =
VaRq[L3000] − VaRq[L4000]

1/3000 − 1/4000
. (21)

Finally, I approximateVaRq for the original portfolio as its asymptotic VaR plusβ∗q/n∗.

Results are shown in Table 3 for three tail values ofq. Row (i) presents estimates of VaR obtained by

direct simulation of the original portfolio. Row (ii ) presents the asymptotic VaR for the original portfolio

given byE[Ln|αq(X)]. Row (iii ) shows VaR for the comparable portfolio obtained using equation (15). The

granularity add-onβ∗q/n∗ is shown in row (iv). Row (v) sums the asymptotic VaR and granularity add-on to

get our approximation. Tracking error between rows (v) and (i) is shown in the final row.

The procedure works well for all values ofq. The error due to linear approximation of the “1/n rule” is

minimal. At q = 99.5%, the linear approximation matches the directly calculated VaR for the comparable

portfolio to four decimal places. The error due to using the comparable portfolio in place of the original

portfolio is also small. Atq = 99.5%, our approximated VaR overshoots its target by 4 basis points.

Table 3: Direct and Approximated Estimates of VaR∗

q: 99.0 99.5 99.9
(i) “True” VaR 3.952 4.713 6.641
(ii ) Asymptotic VaR 3.579 4.312 6.086
(iii ) VaR for comparable portfolio 3.944 4.752 6.708
(iv) Granularity add-on 0.356 0.440 0.622
(v) Approximated VaR 3.935 4.752 6.708
(vi) Tracking error −0.017 +0.040 +0.066

*: All quantities expressed in percentage points. “True” VaR estimated by simulation
with 200,000 Monte Carlo trials.

For the special case of the CreditRisk+ model, the portfolio data needed for the moment-matching map-
21In a sample of large bank commercial loan portfolios, Treacy and Carey (1998, Chart 3) show that roughly half of aggregate

internally rated outstandings are investment grade.
22Note that the procedure for calculating the granularity add-on does not requiren∗ to be an integer.
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ping method should pose minimal additional reporting burden for regulated institutions. Default probability,

expected LGD and total bucket exposure would need to be reported by the bank to calculate the asymptotic

capital charge. The factor loadings and (presumably) LGD volatilities are to be chosen by the regulator. The

only new required inputs, the within-bucket Herfindahl indices, are easily calculated from the individual

exposure sizes.

It should be emphasized that the theoretical underpinnings for the granularity adjustment apply equally

to mark-to-market models. The simple linear formulae for parameters of the comparable homogeneous port-

folio depend on the linear functional forms assumed in CreditRisk+. Specifications based on more complex

models, e.g., KMV Portfolio Manager or CreditMetrics, imply more complex mapping formulae whose in-

puts need not be reducable to bucket-level summary statistics (e.g., Herfindahl indices). However, it seems

reasonable to conjecture that one can achieve tolerable accuracy using crude rules based on the CreditRisk+

formulae. What is most important is that there be a reasonably accurate measure for the “effective” obligor

count (i.e.,n∗) in a heterogeneous portfolio. Most bank portfolios are heavy-tailed in exposure size distri-

bution, and thus may have an effectiven∗ that is an order of magnitude smaller than the raw obligor count

in the portfolio.

5 Asymptotic properties of EEL capital charges

Industry application of credit risk modeling to capital allocation appears invariably to equate soundness

with a coverage target for value-at-risk. The VaR soundness standard does have shortcomings, at least in

principle. Because it ties capital to a single percentile of the distribution of loss, it can lead to “cliff effects.”

To take an extreme example, say we construct a portfolio in which losses are all or nothing. That is, the

loss rate equals zero with probabilityp, and equals one with probability1 − p. If the VaR target quantile

q is less than or equal top, the VaR capital charge is zero, but ifq = p + ε for any positiveε, the capital

charge is 100%. Banks potentially could securitize portfolios into structured tranches in order to arbitrage

this effect. A closely related problem is that VaR can exhibit a counterintuitive non-monotonic relationship

with the variance and higher moments of the loss distribution. If factor loadings are pushed high enough,

then the probability mass of the loss distribution can be pushed so far into the tail (beyond theqth percentile)

that further increasing factor loadings actually decreases VaR. Thus, VaR can decline as the probability of a

cataclysmic loss increases.

As an alternative to VaR, a soundness standard can be based onexpected excess loss(“EEL”). Under

the EEL paradigm, an institution holds capital (plus reserves) so that the expected credit loss in excess of

capital is less than or equal to a target loss rateθ. That is, ifθ is the targeted loss rate andL is credit loss

as a percentage of total exposure, then the required capital (plus reserves) isc per dollar of total exposure,

wherec solves

θ = EEL[L, c] ≡ E[(L− c)+], (22)

and whereY + denotesmax(Y, 0).
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EEL offers some important advantages as a soundness standard. Cliff effects are eliminated. If the

distribution ofL is continuous atc, then the EEL operator is continuous with respect toc, so small changes

in theθ standard can be accommodated by small changes inc.23 In all the models in widespread use, either

the distribution ofL is continuous or it becomes continuous in the asymptotic limit. McAllister and Mingo

(1996) propose EEL-based soundness standards for securitizations to prevent banks from exploiting the VaR

cliff effect. EEL also avoids the “back-bending” problem. As long asc is greater than expected loss, any

mean-preserving spread in the distribution of loss increases EEL, soc must increase in order to maintain

EEL at its target level.

Unfortunately, risk-bucket capital charges cannot be derived under an EEL paradigm, because EEL

capital charges are never portfolio-invariant. Some intuition for this problem can be gained by writing

the asymptotic EEL for homogeneous portfolios in terms of the distribution of the systematic risk factor.

Assume we have loans of two types, denoted “a” and “b”. Let ψa(x) denote the expected loss for bucketa

loans conditional onX=x. Under regulatory conditions (A-1) and (A-5),La−ψa(X) → 0, almost surely,

so

EEL[La, ca] = E[(La − ca)+] → E[(ψa(X) − ca)+]. (23)

The asymptotic EEL capital chargeca is chosen to set this quantity to the desired targetθ. Similar analysis

for bucketb givescb.

Now say we have a mixed portfolio containing equal numbers of loans froma andb. For simplicity,

the exposures are equal-sized. Asymptotic EEL for the mixed portfolio is given byE[(ψm(X) − cm)+].
By construction of the mixed portfolio, we haveψm(X) = (ψa(X) + ψb(X))/2. If asymptotic EEL were

portfolio-invariant, then a capital charge ofcm = (ca + cb)/2 would yield an EEL ofθ for the mixed

portfolio. To test whether this holds, I evaluate

E[(ψm(X) − cm)+] = E[((ψa(X) − ca)/2 + (ψb(X) − cb)/2)+]. (24)

We now require the following lemma:

Lemma 1

If Y1 andY2 are integrable random variables on a probability space(Ω,F , P ), then

E[(Y1 + Y2)+] ≤ E[Y +
1 ] + E[Y +

2 ]. (25)

If P ({ω : (Y1(ω)<0<Y2(ω)) ∨ (Y2(ω)<0<Y1(ω))}) > 0, then the inequality in equation (25) is strict.

Proof is given in Appendix E.
23More formally, ifC(θ) is a function mappingθ to the solution forc in equation (22), then by taking total derivatives we get

C′(θ) = −1/(1 − FL(C(θ))), whereFL is the cdf ofL.
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The conditions of Lemma 1 apply toYi ≡ (ψi(X) − ci)/2, which gives us

E[(ψm(X) − cm)+] ≤ E[((ψa(X) − ca)/2)+] + E[((ψb(X) − cb)/2)+] = θ. (26)

In general, when EEL is fixed across buckets, the threshold realization of X at which homogeneous portfolio

a hits insolvency does not equal the corresponding threshold for homogeneous portfoliob, so for some

interval ofx values we will have eitherψa(x) − ca < 0 < ψb(x) − cb or ψa(x) − ca > 0 > ψb(x) − cb.24

Therefore, the inequality in equation (26) will in most situations be strict, which implies thatcm is too strict

a capital requirement for the asymptotic mixed portfolio.

To provide a rough idea of how much we overshoot required capital in a mixed portfolio, I apply EEL to

an asymptotic, single systematic factor version of CreditRisk+. In Appendix F, I show that asymptotic EEL

takes on a relatively simple form in this model. Table 4 presents EEL- and VaR-based capital requirements

for homogeneous asymptotic portfolios of different credit ratings. Parameters for each rating grade and the

volatility of X are taken from Table 1. The “EEL” and “VaR” columns in Table 4 report required capital

charges (gross of reserves) for an EEL target ofθ = 0.00002 (i.e., 0.2 basis points) and a VaR target of

q = 99.5%, respectively. The value ofθ was chosen to equate capital requirements under the two standards

for an obligor at the border of investment and speculative grades. In this example, the EEL standard produces

lower (higher) capital requirements than VaR for the higher (lower) grades. Without further analysis, it is

unclear whether this result is model-dependent.

Table 4: Asymptotic EEL and VaR Capital Charges∗

EEL VaR
AA 0.050 0.135
A 0.131 0.248

BBB 0.571 0.709
BB 4.135 3.397
B 19.352 12.657

CCC 45.550 27.390
*: Capital in percentage points.

I next form mixed portfolios. In each case, I assume an asymptotic portfolio of equal-sized loans, half

of which are in one bucket and half in another bucket. It is straightforward to show that the conditional

expected loss rate for a mixed portfolio is

ψm(x) =
1
2
ψa(x) +

1
2
ψb(x) = λp̄m(1 − wm + wmx) (27)

wherep̄m = (p̄a + p̄b)/2 andwm = (p̄awa + p̄bwb)/(2p̄m). Theψm(x) take on the same form as for

homogeneous portfolios, so the tools of Appendix F apply without modification. Results for four different

mixed portfolios are presented in Table 5. The third column shows the capital charge required for the
24These threshold values forX are given byxi = ψ−1

i (ci).
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mixed portfolio to hit the EEL target ofθ. The fourth column shows the average of the capital charges

for homogeneous portfolios of the two constituent buckets. The final column shows the “tracking error” as

a percentage of the third column. As one would expect, the average of the homogeneous capital charges

overshoots the correct mixed-portfolio capital charge by a relatively small (though non-negligible) amount

when the two buckets are adjacent. For a mix of grades AA and A, we overshoot by under 3%. For a mix of

BBB and BB, we overshoot by 6.5%. If distant buckets are mixed, the overshoot is much larger (over 16%

for the two examples in the table).

Table 5: Asymptotic EEL for Mixed Portfolios

Bucketa Bucketb cm (ca + cb)/2 Error
AA A 0.088 0.090 +2.7%
A B 8.378 9.741 +16.3%

BBB BB 2.210 2.353 +6.5%
AA CCC 19.658 22.800 +16.0%

*: Capital charges expressed in percentage points.

Discussion

This paper shows how risk-factor models of credit value-at-risk can be used to justify and calibrate a ratings-

based risk-bucket system for assigning capital charges for credit risk at the instrument level. Risk-bucket

systems, by definition, permit capital charges to depend only on the characteristics of the instrument and

its obligor, and not the characteristics of the remainder of the portfolio. Risk-factor models deliver this

property, which I callportfolio invariance, only if two conditions are satisfied. First, the portfolio must be

asymptotically fine-grained, in order that all idiosyncratic risk be diversified away. Second, there can be

only a single systematic risk factor.

Violation of the first condition, which occurs for every finite portfolio, does not pose a serious obstacle

in practice. Analysis of rates of convergence of VaR to its asymptotic limit leads to a theoretically sound

and practical method of approximating a portfolio-level adjustment for undiversified idiosyncratic risk.

The second condition presents a greater dilemma. The single risk factor assumption, in effect, imposes

a single monolithic business cycle on all obligors. A revised Basel Accord must apply to the largest interna-

tional banks, so the single risk factor should in principle represent the global business cycle. By assumption,

all other credit risk is strictly idiosyncratic to the obligor. In reality, the global business cycle is a composite

of a multiplicity of cycles tied to geography (e.g., political shifts, natural disasters) or to prices of production

inputs (e.g., oil, commodities). A single factor model cannot capture any clustering of firm defaults due to

common sensitivity to these smaller-scale components of the global business cycle. Holding fixed the state

of the global economy, a local recession in, for example, Spain is permitted to contribute nothing to the

default rate of Spanish obligors. If there are indeed pockets of risk, then calibrating a single factor model to

a broadly diversified international credit index may significantly understate the capital needed to support a
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regional or specialized lender.

Would empirical violation of the single factor assumption necessarily render a risk-bucket capital rule

unreliable and ineffective? The answer depends on the scope of application and the sophistication of debt

markets. Regulators will need to use caution and judgement in applying risk-bucket capital charges to

institutions that are less broadly diversified. One should note that the current Basel Accord, which is itself

a risk-bucket system, is applied to an enormous range of institutions, so it seems unlikely that a reformed

Accord would bring about any greater harm.

More generally, the ability of banks to subvert risk-bucket capital rules by exploiting the inadequacy

of the single factor assumption depends on the capacity of debt markets to recognize and price different

risk-factors. At present, this level of sophistication appears to be lacking. Partly because markets do not

yet provide precise information on correlations of credit events across obligors, many (perhaps most) of

the institutions that actively use credit VaR models effectively impose the single-factor assumption.25 In

the near- to medium-term, therefore, the implausibility of the single factor assumption need not present an

obstacle to the implementation of reformed ratings-based risk-bucket capital rules. In the long run, however,

the need to relax this assumption may impel adoption of a more sophisticated internal-models regulatory

regime.

Appendix

A Proof of Propositions 1 and 2

The proof of Proposition 1 requires a version of the the strong law of large numbers for a sequence{Yn} of

random variables and a sequence{an} of positive constants:

Lemma 2

If an ↑ ∞ and
∑∞

n=1(V[Yn]/a2
n) <∞, then

(
n∑
i=1

Yn − E[
n∑
i=1

Yn]

)
/an → 0 a.s..

Proof is given by Petrov, ed (1995), Theorem 6.7. We also make use of the following lemma:

Lemma 3

If {bn} is a sequence of positive real numbers such that{bn} isO(n−ρ) for someρ > 1, then
∑∞

n=1 bn <∞.

This lemma is a corollary of Theorem 3.5.2 in Knopp (1956) and the convergence of the harmonic series

1/nρ for ρ > 1 (see Knopp 1956, Example 3.1.2.3).
25Users of KMV Portfolio Manager and CreditMetrics often impose a uniform asset-value correlation across obligors. Users of

CreditRisk+ typically assume a single factor and a factor loading ofw = 1 for all obligors. In both these examples, the user is
implicitly imposing both a single systematic factor and a uniform value for the factor loading.
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We now prove Proposition 1. LetYn ≡ UnAn andan ≡∑n
i=1Ai. conditional onX=x, we have

∞∑
n=1

(V[Yn]/a2
n) =

∞∑
n=1

(
An/

n∑
i=1

Ai

)2

V[Un|x]

Under the actuarial definition of loss,Un is bounded in[0, 1], so we must haveV[Un|x] < 1 for anyX=x.

For this proposition to hold under the mark-to-market paradigm as well, we require assumption (A-5), which

implies

V[Un|x] ≤ E[|Un|2|x] ≤ µ2.

Therefore, under either definition of loss, there exists a finite constantµ2 such that

∞∑
n=1

(V[Yn]/a2
n) ≤ µ2

∞∑
n=1

(
An/

n∑
i=1

Ai

)2

.

By part (b) of assumption (A-1), the sequence{An/
∑n

i=1Ai} is O(n−(1/2+ζ)) for someζ > 0, so the

sequence
{

(An/
∑n

i=1Ai)
2
}

is O(n−(1+2ζ)). By Lemma 3, the series sum must be finite. By part (a) of

assumption (A-1), we havean ↑ ∞. The conditions of Lemma 2 are thus satisfied. The loss ratioLn is

equal to
∑n

i=1 Yi/an, so Proposition 1 is proved. QED

Proposition 2 follows similar logic. We require the following lemma:

Lemma 4

Let {bn} and {dn} be sequences of real numbers such thatan ≡ ∑n
i=1 bi ↑ ∞ and dn → 0. Then

(1/an)
∑n

i=1 bidi → 0.

This result is a special case of Petrov, ed (1995), Lemma 6.10. If we letbn = An anddn = An/
∑n

i=1Ai,

then assumption (A-1) guarantees thatan ↑ ∞ anddn → 0, so apply Lemma 4 to get

1∑n
i=1Ai

n∑
i=1

A2
i∑i

j=1Aj
→ 0. (28)

The standard rule for conditional variance gives

V[Ln] − V[E[Ln|X]] = E[V[Ln|X]] = E

[∑n
i=1A

2
iV[Ui|X]

(
∑n

i=1Ai)
2

]
.

E[V[Ui|X]] must be less than one under the actuarial paradigm and is bounded from above by assumption

(A-5) under the mark-to-market paradigm. Therefore, there exists a finite constantµ2 such that

E[V[Ln|X]] ≤ µ2

∑n
i=1A

2
i

(
∑n

i=1Ai)
2 = µ2

1∑n
i=1Ai

n∑
i=1

A2
i∑n

j=1Aj
≤ µ2

1∑n
i=1Ai

n∑
i=1

A2
i∑i

j=1Aj
→ 0.
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As E[V[Ln|X]] must be non-negative and is bounded from above by quantity converging to zero, it too must

converge to zero. QED

B Proof of Proposition 3

Almost sure convergence implies convergence in probability (see White 1984, Theorem 2.24), so for allx

andε > 0,

Pr(|Ln − E[Ln|x]| < ε|x) → 1. (29)

If Fn is the cdf ofLn, then equation (29) implies

Fn(E[Ln|x] + ε|x) − Fn(E[Ln|x] − ε|x) → 1.

BecauseFn is bounded in[0, 1], we must haveFn(E[Ln|x] + ε|x) → 1 andFn(E[Ln|x] − ε|x) → 0.

Let S+
n denote the set of realizationsx of X such thatE[Ln|x] is less than or equal to itsqth quantile

value, i.e.,

S+
n ≡ {x : E[Ln|x] ≤ αq(E[Ln|X])}.

By construction,Pr(x ∈ S+
n ) ≥ q.

By the usual rules for conditional probability, we have

Fn(αq(E[Ln|X]) + ε) = Fn(αq(E[Ln|X]) + ε|X ∈ S+
n ) Pr(X ∈ S+

n )

+ Fn(αq(E[Ln|X]) + ε|X 6∈ S+
n ) Pr(X 6∈ S+

n )

≥ Fn(αq(E[Ln|X]) + ε|X ∈ S+
n ) Pr(X ∈ S+

n )

≥ Fn(αq(E[Ln|X]) + ε|X ∈ S+
n ) q (30)

For allx ∈ S+
n , we have

Fn(αq(E[Ln|X]) + ε|x) ≥ Fn(E[Ln|x] + ε|x) → 1

so the dominated convergence theorem implies that26

Fn(αq(E[Ln|X]) + ε|X ∈ S+
n ) → 1,

so from equation (30) we have

Fn(αq(E[Ln|X]) + ε) → [q, 1]
26See Theorem 16.4 in Billingsley (1995).
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as required.

The other half of the proof follows similarly. DefineS−
n as

S−
n ≡ {x : E[Ln|x] ≥ αq(E[Ln|X])}

so thatPr(x ∈ S−
n ) ≥ 1 − q. Then

Fn(αq(E[Ln|X]) − ε) = Fn(αq(E[Ln|X]) − ε|X 6∈ S−
n ) Pr(X 6∈ S−

n )

+ Fn(αq(E[Ln|X]) − ε|X ∈ S−
n ) Pr(X ∈ S−

n )

≤ q + Fn(αq(E[Ln|X]) − ε|X ∈ S−
n ) Pr(X ∈ S−

n ). (31)

For allx ∈ S−
n , we have

Fn(αq(E[Ln|X]) − ε|x) ≤ Fn(E[Ln|x] − ε|x) → 0

so the dominated convergence theorem implies that

Fn(αq(E[Ln|X]) − ε|X ∈ S−
n ) → 0,

so from equation (31) we have

Fn(αq(E[Ln|X]) − ε) → [0, q]

as required. QED

C Proof of Proposition 5

The proof of Proposition 5 requires the following lemma:

Lemma 5

Let Y1 andY2 be random variables with cdfsF1 andF2, respectively. For ally and allε > 0,

|F1(y) − F2(y)| ≤ Pr(|Y1 − Y2| > ε) + max{F2(y + ε) − F2(y), F2(y) − F2(y − ε)}.

Proof: For anyy and anyε > 0,

{Y1 : Y1 ≤ y} ⊂ {Y2 : Y2 ≤ y + ε} ∪ {(Y1, Y2) : |Y1 − Y2| > ε}
{Y2 : Y2 ≤ y − ε} ⊂ {Y1 : Y1 ≤ y} ∪ {(Y1, Y2) : |Y1 − Y2| > ε},
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so we must have

Pr(Y1 ≤ y) ≤ Pr(Y2 ≤ y + ε) + Pr(|Y1 − Y2| > ε)

Pr(Y1 ≤ y) ≥ Pr(Y2 ≤ y − ε) − Pr(|Y1 − Y2| > ε).

SubstractF2(y) from both sides of each equation, and rearrange to get

F1(y) − F2(y) ≤ F2(y + ε) − F2(y) + Pr(|Y1 − Y2| > ε)

F2(y) − F1(y) ≤ F2(y) − F2(y − ε) + Pr(|Y1 − Y2| > ε).

Combine these inequalities to complete the proof. QED

To apply Lemma 5, letY1 = Ln andY2 = E[Ln|X], and letF ∗
n denote the cdf ofE[Ln|X]. We then

have

|Fn(E[Ln|αq(X)]) − F ∗
n(E[Ln|αq(X)])| ≤ Pr(|Ln − E[Ln|X]| > ε)

+ max{F ∗
n(E[Ln|αq(X)] + ε) − F ∗

n(E[Ln|αq(X)]), F ∗
n (E[Ln|αq(X)]) − F ∗

n(E[Ln|αq(X)] − ε)} (32)

for anyε > 0.

The regularity conditions in (A-4) are sufficient to guarantee that the cdfF ∗
n is differentiable in the

neighborhood ofΨn(αq(X)) for n sufficiently large. To see this, observe thatF ∗
n(y) = H(Ψ−1

n (y)), where

H is the cdf ofX. By (A-4), there exists aδ > 0 and open setB containingαq(X) such that for allx ∈ B,

Ψ′
n(x) is bounded aboveδ for all n greater than some finiten0. Apply the inverse function theorem to show

that

f∗n(Ψn(x)) = h(Ψ−1
n (Ψn(x)))Ψ−1

n
′(Ψn(x)) =

h(x)
Ψ′
n(x)

< h(x)/δ

for all x ∈ B andn > n0. Therefore, forn > n0 and anyη > 0, there is anε∗ > 0 such that

max{F ∗
n(Ψn(αq(X)) + ε) − F ∗

n(Ψn(αq(X))), F ∗
n (Ψn(αq(X))) − F ∗

n(Ψn(αq(X)) − ε)}
< εη + εf∗n(Ψn(αq(X))) < ε(η + h(x)/δ)

for all ε < ε∗. Becauseη andε can be made arbitrarily small andδ > 0, the expression

max{F ∗
n(Ψn(αq(X)) + ε) − F ∗

n(Ψn(αq(X))), F ∗
n (Ψn(αq(X))) − F ∗

n(Ψn(αq(X)) − ε)}

can also be made arbitrarily small for alln sufficiently large.

By Proposition 1 and the dominated convergence theorem,Ln − E[Ln|X] converges to zero almost

surely, which implies convergence in probability as well. Therefore, for any choice ofε > 0, Pr(|Ln −
E[Ln|X]| > ε) can be made arbitrarily small by lettingn→ ∞.
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The assumption thatX is continuous impliesH(αq(X)) = q exactly. The regularity assumptions on the

ψi imply thatΨn(x) is strictly increasing aroundx = αq(X). Therefore,F ∗
n(E[Ln|αq(X)]) = q exactly as

well. From equation (32), we conclude that|Fn(E[Ln|αq(X)]) − q| vanishes asn→ ∞. QED

D Proof of Proposition 6

The proof of Proposition 6 follows almost directly from two lemmas. The first provides the rate of conver-

gence of the moments ofLn to their asymptotic values. The second shows that quantiles converge at the

same rate.

Lemma 6

Let Z1, Z2, . . . , be a sequence of independent and identically distributed random variables, and letYn ≡
(1/n)

∑n
i=1 Zi denote the mean of the partial sums. If all moments of theZi exist, thenE[Yn]=E[Z1] and

E[Y j
n ] = E[Z1]j +O(n−1)

for j ≥ 2.

Proof: LetMZ(t) be the moment generating function (“mgf”) of theZi and letMn(t) be the mgf of the

Yn. Because theZi are independent,Mn(t) is given by

Mn(t) = MZ(t/n)n =


 ∞∑
j=0

µj
j!nj

tj



n

, (33)

where theµj are the uncentered moments of theZi. Using Gradshteyn and Ryzhik (1965, eq. 0.314), we

can expand the exponentiated polynomial as

Mn(t) =
∞∑
j=0

cjt
j , (34)

where the coefficientscj are

c0 = µ0 = 1;

cj =
1
j

j∑
k=1

(kn− j + k)
µk
k!nk

cj−k for j > 0.

For j = 1, we getc1 = µ1. Forj > 1, we rearrange the expression forcj to get

cj =
1
j
µ1cj−1 +

1
j

j−1∑
k=1

µk+1cj−k−1 − (j − k)µkcj−k
k!nk

. (35)
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For j = 2, we havec2 = µ1c1/2 +O(n−1) = µ2
1/2! +O(n−1). For higherj, we use induction. If

cj−1 =
µj−1

1

(j − 1)!
+O(n−1),

then equation (35) implies that

cj =
µ1

j

µj−1
1

(j − 1)!
+O(n−1) =

µj1
j!

+O(n−1),

as required. By definition of the moment generating function, the first moment ofYn is c1 and thejth

moment iscjj!, which completes the proof. QED

Lemma 7

Let {Yn} be a sequence of random variables converging in distribution toY ∗, and letκnj andκ∗j be the

jth cumulants ofYn and Y ∗, respectively. If the distribution ofY ∗ is arbitrarily differentiable, and if

(κnj − κ∗j ) = O(n−1), then

αq(Yn) − αq(Y ∗) = O(n−1).

Proof is a mechanical application of a generalized Cornish-Fisher expansion due to Hill and Davis (1968) for

a sequence of distributions converging to an arbitrarily differentiable limiting distribution. Their expansion

can be re-arranged to show that the difference of quantiles equals

∞∑
j=1

(κnj − κ∗j)Ξj(αq(Y
∗))

plus terms depending on products of the(κnj − κ∗j ), where the functionsΞj(y) depend only on derivatives

of the density ofY ∗.

Proof of Proposition 6: By Lemma 6, the conditional moments ofLn are given byE[Ln|X] = ψ(X)
and

E[Ljn|X] = ψ(X)j +O(n−1)

for j ≥ 2. By the dominated convergence theorem, the unconditional moments areE[Ln] = E[ψ(X)] and

E[Ljn] = E[ψ(X)j ] +O(n−1) (36)

for j ≥ 2. Note that theE[ψ(X)j ] are simply the moments of the distribution ofψ(X).
Let κnj andκ∗j denote thejth cumulants ofLn andψ(X), respectively. First cumulants equal first

moments, soκn1 = κ∗1 exactly. Using standard formulae for conversion of moments to cumulants (e.g.,
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Stuart and Ord 1994, eq. 3.40), we can easily show that equation (36) implies

κnj − κ∗j = O(n−1)

for j ≥ 2.

The distribution ofψ(X) isF ∗(y) = H(ψ−1(y)). By assumption,ψ is increasing, continuous and arbi-

trarily differentiable, soψ−1 also has these properties. As the distributionH of X is arbitrarily continuous,

F ∗ must be arbitrarily continuous as well. The conditions of Lemma 7 are satisfied, which completes the

proof. QED

E Proof of Lemma 1

Divide Ω into two subsets

B1 = {ω : 0≤min(Y1(ω), Y2(ω)) ∨ max(Y1(ω), Y2(ω))≤0}
B2 = {ω : (Y1(ω)<0<Y2(ω)) ∨ (Y2(ω)<0<Y1(ω))}.

Observe thatB1 ∪ B2 = Ω andB1 ∩ B2 = ∅. If Y is an integrable random variable on(Ω,F , P ), we can

write

E[Y +] =
∫

Ω
max(Y (ω), 0)P (dω)

=
∫
B1

max(Y (ω), 0)P (dω) +
∫
B2

max(Y (ω), 0)P (dω).

The setB1 contains allω for which Y1 andY2 are either both positive or both negative. Under both these

circumstances,max(Y1(ω) + Y2(ω), 0) equalsmax(Y1(ω), 0) + max(Y2(ω), 0), so

∫
B1

max(Y1(ω) + Y2(ω), 0)P (dω)

=
∫
B1

max(Y1(ω), 0)P (dω) +
∫
B1

max(Y2(ω), 0)P (dω). (37)

The setB2 contains allω for whichY1 andY2 are of opposite sign, so

∫
B2

max(Y1(ω) + Y2(ω), 0)P (dω)

≤
∫
B2

max(Y1(ω), 0)P (dω) +
∫
B2

max(Y2(ω), 0)P (dω). (38)

Summing left and right hand sides of equations (37) and (38), we obtain

E[(Y1 + Y2)+] ≤ E[Y +
1 ] + E[Y +

2 ]. (39)
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If P (B2) > 0, then the inequality in equation (38) is strict, and therefore the inequality in equation (39) is

strict as well.

F Asymptotic EEL in CreditRisk +

I derive the asymptotic EEL for a homogeneous portfolio under a single systematic factor version of

CreditRisk+. Let p̄ denote default probability,λ denote LGD,w denote factor loading, andσ denote the

volatility of systematic factorX. The conditional expected loss rate in the CreditRisk+ specification is given

by equation (14). Asn→ ∞, Ln converges toψ(X), so EEL converges to

EEL[L∞, c] = E[(ψ(X) − c)+] =
∫ ∞

ψ−1(c)
(ψ(x) − c)h(x) dx, (40)

whereh(·) is the gamma pdf with mean one, varianceσ2. Using Abramowitz and Stegun (1968, 6.5.1,

6.5.21) to solve this integral, I obtain

EEL[L∞, c] = (EL− c)(1 −H(ψ−1(c))) +
EL · w

Γ(1 + 1/σ2)
(
ψ−1(c)/σ2

)1/σ2

exp
(−ψ−1(c)/σ2

)
, (41)

whereH(·) denotes the gamma cdf,EL is expected loss (λp̄), and

ψ−1(c) =
c− (1 − w) · EL

w · EL .

The gamma cdf does not have neat closed form, but poses no numerical difficulties. Standard software

for solving nonlinear equations quickly finds the capital ratioc which covers EEL targetθ. In the special

case ofσ = 1, the gamma distribution reduces to the exponential distribution, and equation (41) simplifies

to

EEL[L∞, c] = w · EL · exp
(
ψ−1(c)

)
.

To hit an EEL target ofθ, we invert this equation to get

c = EL− w ·EL · (1 + ln(θ) − ln(w · EL)).
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